
MERGING FEED-FORWARD SUBLAYERS FOR
COMPRESSED TRANSFORMERS

Neha Verma, Kenton Murray & Kevin Duh
Johns Hopkins University
nverma7@jhu.edu

ABSTRACT

With the rise and ubiquity of larger deep learning models, the need for high-quality
compression techniques has been growing in order to deploy these models widely.
The sheer parameter count of some models makes it difficult to fit them into the
memory constraints of different hardware. In this work, we present a novel ap-
proach to model compression by merging similar parameter groups within a model,
rather than pruning away less important parameters. Specifically, we propose a
straightforward method for selecting, aligning, and merging separate feed-forward
sublayers in Transformer models, and test our method on a language modeling task,
image classification, and machine translation. With our method, we demonstrate
performance comparable to the original models across our three diverse tasks while
combining more than a third of model feed-forward sublayers. For instance, we can
remove over 21% of total parameters from a Vision Transformer, while maintaining
99% of its original performance. Additionally, we observe that some feed-forward
sublayers often exhibit regions of high similarity between their activations, which
may help explain their surprising mergeability. 1

1 INTRODUCTION

Recent advances in deep learning have been marked by a stark increase in model size in order to
achieve state-of-the-art performance. With this trend towards increasing model parameter count
to improve results, there is a need for more high-quality compression techniques that balance
compression effectiveness with model capability. These techniques can help facilitate the use of these
models across a variety of inference settings, depending on hardware availability.

Much of the prior work in model compression has built upon on distillation, quantization, and
pruning techniques (Hinton et al., 2015; Fiesler et al., 1990; LeCun et al., 1989). Regarding pruning,
prior work has introduced many approaches that identify regions of prunable parameters that can
be removed from the model without drastically changing performance. These techniques can target
individual neurons or general regions of a model—like attention heads, blocks from layers, or
even entire layers. (Voita et al., 2019; Lagunas et al., 2021; Sajjad et al., 2023). However, while
“unimportant” features have been important to identify for pruning techniques, we can also exploit the
notion of “redundant” features as a compression target. There has been far less focus on compression
methods that target potentially redundant features within a model.

When targeting redundant features for compression, we can turn to merging sets of similar parameters
rather than pruning them. Relatedly, a line of recent work has explored merging parameters from
two or more separate models in order to combine their functionalities into a single model (Goddard
et al., 2024; Yang et al., 2024). In our case, we can imagine extending parameter merging to merge
sublayers within one model, rather than separate models, in order to achieve model compression.

To this end, we propose a novel compression method that aligns and merges several feed-forward
sublayers within Transformer architectures (Vaswani et al., 2017). We target feed-forward sublayers
in particular due to their large parameter count and easy mergeability. With a small amount of
recovery fine-tuning, our models quickly regain competitive performance at reduced parameter counts.
Through our testing, we find that these groups of feed-forward sublayers are notably compressible

1Toolkit and all experiments will be available at code_link_forthcoming

1

code_link_forthcoming


WoutWinWoutWin

MHA Win Wout
0 0 0

MHA Win Wout
1 1 1

MHA Win Wout
2 2 2

MHA Win Wout
0 * *

MHA
1 * *

MHA
2 * *

P1 P1
T

P2 P2
T

Apply transformations

Merge FF parameters

Tie merged weights

Figure 1: Overview of the feed-forward alignment and merging algorithm used to compress models
in an example three layers of a Transformer. Multi-headed attention is abbreviated to MHA, feed-
forward sublayers are depicted with W in and W out weights, and Add&Norm operations are depicted
with

⊕
, connected by arrows indicating residual connections.2 Permutation transformation matrices

are shown as Pi. Our method includes a permutation finding step, applying the transformations,
merging transformed parameters, and finally tying the merged parameters. By merging and tying k
feed-forwards, we can reduce the model size by k − 1 feed-forward sublayers.

via merging, giving rise to a simple and surprisingly effective framework, applicable to a wide variety
of already-existing models.

We highlight the contributions of our work:

1. We propose a novel model compression method inspired by recent work in model merging.
This approach is orthogonal to popular compression methods like quantization and pruning.

2. Across three different Transformer-based models, namely GPT-2, ViT, and a machine
translation model, we show that merging over one-third of feed-forward sublayers and
fine-tuning the resulting model can achieve performance comparable to the original models.

3. To explore the surprising effectiveness of merging, we compute similarity measures be-
tween feed-forward sublayers within the same model, and find regions with highly similar
activations. These same patterns do not in counterpart attention sublayers.

2 RELATED WORK

In this section, we review work related to weight sharing for reduced parameter models, and prior work
related to pruning and redundancy in models. We also summarize popular compression techniques in
Table 1, and compare them to our merging-based compression approach.

2.1 WEIGHT SHARING FOR SMALLER MODELS

Prior work on weight sharing has largely focused on training models from scratch with specific sharing
schemes. Sharing input and output embedding layers has been widely used to help cap total parameter
count, but more importantly to provide important gradient sharing patterns for better generalization
for many language tasks (Press & Wolf, 2017; Inan et al., 2017). In the case of non-embedding
Transformer layers, prior work has explored numerous weight tying patterns for training new models
(Dehghani et al., 2019; Reid et al., 2021; Takase & Kiyono, 2023). Liu et al. (2024) use heavy weight
sharing at initialization between Transformer layers to achieve state-of-the-art sub-billion parameter
language models. Pires et al. (2023) specifically tie feed-forward sublayers at initialization and train

2This diagram shows a Post-LN Transformer, but our method easily applies to Pre-LN Transformers as well.

2



machine translation models that can outperform standard Transformer architectures, when training at
large enough tied feed-forward widths. In this work, we instead start from a pre-trained model, and
then use weight sharing as a tool to reduce the overall parameter count.

2.2 PRUNING AND REDUNDANCY

Prior work has explored different aspects of redundancy patterns between adjacent Transformer
components, and suggested several techniques to reduce or exploit this phenomenon. Dalvi et al.
(2020) use CKA to track layer redundancy in BERT and XLNet and correlation clustering to find
redundant sets of neurons. Using the discovered clusters, they remove redundant neurons for fewer
total parameters. Men et al. (2024); Gromov et al. (2024) show that by removing entire Transformer
layers in decoder-only models, very deep language models can achieve inference speedups without
sacrificing major performance. Li et al. (2024) propose a compression method applicable to sparsely-
activated mixture-of-expert models (SMoEs) that similarly draws from model merging work to
compress experts in large SMoE models. Our method extends a similar approach to a much wider set
of compressible models.

Table 1: A summary and comparison of different compression methods, including merging.

Motivation Training Required Run Time Savings

Quantization reduce precision No No3

Pruning remove unimportant parameters generally fine-tuning Depends
Distillation train smaller student from teacher Yes Yes
Merging combine redundant parameters fine-tuning No

3 MERGING FEED-FORWARD SUBLAYERS

In this section, we discuss choosing feed-forward sublayers as our merging target, review necessary
background for permutation-based neuron alignment, and then describe our compression method.

3.1 FEED-FORWARD SUBLAYERS AS A MERGING TARGET

We focus our interest on Transformer feed-forward (FF) sublayers for several reasons. The first,
and most simple, is that these sublayers generally constitute around two-thirds of non-embedding
parameters Transformer encoder or decoder models. Compressing these parameters can constitute
substantial overall savings in a model. Secondly, as we consider merging these parameters, we
note that the parameterization of FF sublayers is far simpler than the other major sub-block of a
Transformer layer, namely multi-headed attention (MHA). This structural simplicity makes it a good
candidate for merging-based approaches for compression.

Beyond practical considerations, prior work has also established several properties of Transformer FF
sublayers that make them good candidates for compression via merging. Prior work on FF sublayers
has shown that they can be very sparsely activated (Li et al., 2023), where non-zero percentages of
FF activations can be as low as 3-5%. Additionally, another work has demonstrated evidence that
combining LayerNorm and feed-forwards, in both Post- and Pre-LN architectures, results in some
weakening effects of the contextualization effects of FF sublayers (Kobayashi et al., 2024). The
authors elude to redundancy in the Transformer’s processing due to this interaction. Finally, Pires
et al. (2023) train Transformer-based translation models with only one feed-forward sublayer in the
encoder, tied across each layer. Their models, when trained with extended FF widths, can outperform
base transformers at the same parameter budget.

3Quantization can improve batch throughput during inference, which can result in run time savings, but it
generally does not improve inference speed at a constant batch size.

3



3.2 BACKGROUND ON PERMUTATION-BASED NEURON ALIGNMENT

We propose a merging technique that combines several similar sublayers into a single parameter
set. Our merging technique is inspired by prior work in permutation symmetries of neurons (Li
et al., 2015). This type of prior work has been widely used in studying convergent learning between
models, as well as performing model merging between two or more separate models (Tatro et al.,
2020; Entezari et al., 2022; Ainsworth et al., 2023).

Permutation-based neuron alignment techniques seek to find a superior ordering of neurons in one
layer in order to more closely match the ordering of neurons from another layer. Given two layers
with neurons we wish to align, we compute a forward pass through both of these layers using relevant
data in order to collect features. The layers are generally corresponding parameters from two different
models. We collect these sets of activations, Xα, Xβ ∈ Rn×d, from the output of the parameter two
parameter sets, where n is the number of tokens or patches processed in the forward pass, and d is
the feature dimension.

To determine corresponding features from these activation sets, we compute cross-correlation C, in
line with prior work (Li et al., 2015). µ represents mean vectors, and σ standard deviation vectors.

C = corr(Xα, Xβ) =
E
[
(Xα − µ(Xα))

T
(Xβ − µ(Xβ))

]
σ(Xα)σ(Xβ)

(1)

The resulting matrix C ∈ Rd×d reflects how each feature j in Xα correlates with each feature k in
Xβ . Now, to find the mapping of features from Xα to Xβ that maximize overall correlation, we solve
the following optimization problem, where Πd is the space of all permutations of length d (Li et al.,
2015; Tatro et al., 2020):

π∗ = max
π∈Πd

d∑
j=1

C(j, π(j)) (2)

This problem is a case of the Linear Assignment Problem (LAP), and we solve for π∗ using the
Jonker-Volgenant algorithm implementation provided by scipy (Crouse, 2016).

3.3 COMBINING FEED-FORWARD SUBLAYERS

Now, with the appropriate background, we describe our compression method. For our method, we
first assume that we have some predetermined number of feed-forward sublayers k that we want
to merge. This number can be inferred if given a goal overall parameter reduction ratio, or set
otherwise. In summary, our compression method aligns the ordering of the neurons between the two
feed-forward sublayers in order to merge them.

Given a window of k adjacent feed-forward sublayers, we compute a forward pass using a subset of
data in order to compute features for each feed-forward hidden state. In other words, for Transformer
FF sublayer xout = W outϕ(W inxin + bin) + bout, we obtain features just before the ϕ activation. We
consider only the neurons just after W in because prior work has shown that to reorder the input to
W in and output of W out requires permuting many additional weights due to the residual connections
in order to maintain functional equivalence (Verma & Elbayad, 2024). For each of the k feed-forward
sublayers, we collect features Xi ∈ Rn×d i ∈ [0, k − 1], where n is the number of tokens or patches
processed, and d is the feed-forward dimension.4

We designate the first feed-forward sublayer of the set to be our “anchor”, and we compute the
permutation finding algorithm on each pair of feed-forwards where the first item is always the anchor.
In other words, for each sublayer i ∈ [1, k − 1], we have inputs X0 and Xi, and find πi using the
permutation finding algorithm from Section 3.2.

After converting function πi to its corresponding permutation matrix Pi, we can apply them to each
of the corresponding k− 1 feed-forward sublayers. We then average the transformed weight matrices,
and replace each of the k feed-forwards with their average, as in Equation sets 3 and 4. Finally, we tie
these weights so that in memory they appear as just one sublayer, effectively removing the parameters

4The layer indices reflect local index within the set of k versus global layer index.

4



from k − 1 feed-forward sublayers.

W in∗ =
1

k

(
W in

0 +

k−1∑
i=1

PiW
in
i

)
bin∗ =

1

k

(
bin
0 +

k−1∑
i=1

Pib
in
i

)
(3)

W out∗ =
1

k

(
W out

0 +

k−1∑
i=1

W out
i PT

i

)
bout =

1

k

(
k−1∑
i=0

bout
i

)
(4)

3.4 SELECTING SUBLAYERS TO MERGE

In selecting the k adjacent feed-forward sublayers to merge, we take a sliding window approach. For
all starting layer indices from 0 to (Nlayers − 1) − k, we apply the method outlined in Section 3.3,
and evaluate the resulting compressed model on a validation set.

In reality, although we propose to test each potential window, the cost of computing permutations
and parameter arithmetic is low. The largest cost each iteration is computing features and testing
candidates. However, we only compute features once despite testing Nlayers − k models, because one
forward pass through the exemplar data is sufficient for creating all necessary correlation matrices.
We test these potential candidates and choose the one with best starting evaluation score. We note
that there may be other possible selection heuristics in this setting.

Finally, we follow our merging procedure with recovery fine-tuning to quickly heal performance on
the downstream task. We include an algorithm for our selection method in Algorithm 1.

Algorithm 1 Feed-Forward Sublayer Merge

Input: Model parameters θinput, collected features {Xi}
Nlayers−1
i=0 , batched fine-tuning data Dft

Input constants: k, Nlayers, MAXUPDATES
Initialize: θselected, BESTSCORE← 0 // Assuming a maximized score
for i = 0 to (Nlayers − 1)− k do
θmerged ← COMPRESS(θinput, {Xi}

Nlayers−1
i=0 , k)

if EVAL(θmerged) > BESTSCORE then
θselected ← θmerged

end if
end for
for i = 0 to MAXUPDATES do
θselected ← UPDATE(θselected, Dft(i)) // Fine-tuning step

end for
Output: θselected

4 EXPERIMENTAL SETUP

For testing the extensibility of our method, we test our compression method on several different
Transformer-based models. Specifically, we use GPT-2 (Radford et al., 2019), the Vision Transformer
(ViT) (Dosovitskiy et al., 2020), and a Transformer-based machine translation model from OPUS-MT
(Tiedemann & Thottingal, 2020). We use this variety of models in order to cover a diversity of model
types (decoder-only, encoder, encoder-decoder) and different modalities.

For each setting, we list the exact model used, the data used to compute example features for
correlations, and finally the data used for recovery fine-tuning and evaluation. Additional fine-tuning
hyperparameters are included in Appendix B.

4.1 LANGUAGE MODELING

For our experiments, we use the large release of GPT-2, which has 36 layers and a feed-forward
dimension of 5120. For computing feed-forward features, we use 10k tokens from the validation set
of the Wikitext103 dataset (Merity et al., 2017). Finally, we use the train and test sets from the same
Wikitext103 for fine-tuning and evaluation, respectively.

5



Unlike the other two tasks, the pre-training data for GPT-2 is not publicly available, so we use
Wikitext103 training data for fine-tuning. Due to this discrepancy, our uncompressed GPT-2 baseline
is also fine-tuned on Wikitext103 train in order to make a fair comparison. Because we have access to
the training data for the machine translation and ViT models, we do not provide a fine-tuned baseline
for those as the data we use already appears in their original training data.

We fine-tune our GPT-2 models for up to 100k steps with a batch size of 2. We pack batches to the
context length of 1024 after tokenization with the GPT-2 tokenizer. We select the best model based
on validation perplexity and report average test perplexity with a sliding window of 512 tokens.

4.2 IMAGE CLASSIFICATION WITH VIT

We use a vision transformer (ViT) for our image classification experiments, with resolution of
224x224, and patch size of 16x16.. ViT is a 12-layer Transformer Encoder architecture that is
pre-trained on ImageNet-21k, and subsequently fine-tuned on ImageNet-1k. ImageNet-1k is a
classification task where images belong to one of 1000 categories (Russakovsky et al., 2015). For
computing feed-forward features, we use 10k patches from the ImageNet-1k validation set. Evaluation
results are computed on original validation labels.

We fine-tune our ViT models on ImageNet-1k train for up to 50k steps with a batch size of 128, and
report accuracy scores.

4.3 MACHINE TRANSLATION

For our experiments on machine translation, we use a Chinese-English model from the OPUS-MT
release (Tiedemann & Thottingal, 2020). It is a 12-layer encoder-decoder Transformer with cross-
attention. For computing feed-forward features, we use 10k tokens from the Tatoeba validation set,
counted on the source side (Tiedemann, 2020). For fine-tuning, we use the original training data
released by the Tatoeba translation challenge, sourced from OPUS (Tiedemann, 2012). We apply our
method to both the encoder and decoder separately, constituting two anchors. However, we search
windows in sync, meaning that the same window from the encoder and decoder are merged.

We fine-tune our translation models for up to 100k steps with a batch size of 64. We use sacrebleu
to compute BLEU scores for evaluation (Papineni et al., 2002; Post, 2018).

5 RESULTS

5.1 MERGING FEED-FORWARD SUBLAYERS ACROSS COMPRESSION RATIOS

We evaluate our compression method on image classification using ViT, language modeling using
GPT-2, and machine translation using an OPUS-MT zh-en model, and report our results in Figure
2. We report results at 1/3, 1/2 and (n− 1)/n feed-forward sublayers removed, in order to test our
method at different overall compression ratios.5 We also report results from our compression method
without the permutation step, as seen as “Vanilla” in the figure.

From our results, we see that even up to 1/2 of feed-forward sublayer parameters removed, which
is over 30% in parameter reduction for ViT and GPT-2,6 our method can retain high performance,
similar to the base model. At 1/3 of feed-forward sublayers removed, performance is almost identical,
resulting in only a 1% accuracy drop in ViT, 1 PPL increase in GPT-2, and 2 BLEU drop in the
translation model. Full numerical results can be found in Appendix A. We note that in this sub-billion
parameter regime, prior work has shown that smaller models are more difficult targets of compression
methods (Ashkboos et al., 2024), as well as dense models versus models with natural sparsity patterns
(i.e. Mixture-of-Expert models).

Our findings also hold across all three of our tasks tested, suggesting that our method generalizes
to different types of Transformer-based models. Additionally, we can notice that permutation-
based compression is consistently better compared to vanilla averaging compression, demonstrating

5We note that the OPUS-MT compression ratios are different due to the additional presence of cross-attention
in enc-dec architectures.

6We include embedding parameters in all % parameter reduction and compression ratio calculations

6



0 10 20 30 40 50 60
% Parameter Reduction

30

40

50

60

70

80

Im
ag

eN
et

-1
k 

Ac
cu

ra
cy

 0 FFs 4 FFs 6 FFs

11 FFs

Vanilla FF Merge
Permute FF Merge

(a) ViT

0 10 20 30 40 50 60
% Parameter Reduction

14
16
18
20
22
24
26
28

PP
L 

on
 W

ik
ite

xt
-1

03
 

0 FFs
12 FFs

18 FFs

35 FFs

Vanilla FF Merge
Permute FF Merge

(b) GPT-2

0 5 10 15 20 25 30
% Parameter Reduction

28
30
32
34
36
38
40

Ta
to

eb
a 

zh
-e

n 
BL

EU

0 FFs

4 FFs 6 FFs

11 FFs

Vanilla FF Merge
Permute FF Merge

(c) OPUS-MT

Figure 2: Results across all three tasks depicting compression versus performance results. We
include results from our main method, labeled as Permute FF Merge, as well as our method without
permutation alignment, depicted as Vanilla FF Merge. We note that our method retains almost
complete performance at one-third of feed-forward sublayers removed, across all tasks, and continues
to retain high performance at one-half of FF sublayers removed.

the effectiveness of aligning features within feed-forward sublayers before merging them. This
effectiveness is more pronounced at larger numbers of feed-forward sublayers removed. In summary,
our results show that 1) post-training weight sharing is a simple and effective compression method and
2) permutation-based alignment of these shared weights can improve final compression performance.

5.2 CHOICE OF MERGED SUBLAYERS

In our merging algorithm, we choose which layers to merge by computing performance over a sliding
window of k indices. In doing this, we observe the performance for each set of adjacent feed-forward
groups. For each of our model/task pairs, we plot the performance of the merging algorithm on 1/3 of
feed-forward sublayers before tuning across all groupings, to observe the differences across these
groups. Results are shown in Figure 3. Before tuning, it appears that the choice of layers seems to be
important, resulting in different performance.

0-4 1-5 2-6 3-7 4-8 5-9 6-1
0

7-1
1

FFs Merged

0

10

20

30

40

50

Ac
cu

ra
cy

 o
n 

Im
ag

eN
et

-1
k Vanilla FF Merge

Permute FF Merge

(a) ViT

0-
12

1-
13

2-
14

3-
15

4-
16

5-
17

6-
18

7-
19

8-
20

9-
21

10
-2

2
11

-2
3

12
-2

4
13

-2
5

14
-2

6
15

-2
7

16
-2

8
17

-2
9

18
-3

0
19

-3
1

20
-3

2
21

-3
3

22
-3

4
23

-3
5

FFs Merged

4
5
6
7
8
9

10
11
12

Lo
ss

 o
n 

W
ik

ite
xt

-1
03

Vanilla FF Merge
Permute FF Merge

(b) GPT-2

0-2/0-2
1-3/1-3

2-4/2-4
3-5/3-5

Enc/Dec FFs Merged

0

5

10

15

20

25

BL
EU

 o
n 

Ta
to

eb
a

Vanilla FF Merge
Permute FF Merge

(c) OPUS-MT

Figure 3: Performance curves over different ranges of merged feed-forward sublayers representing
1/3 merged. Across all three tasks, there are clear ranges of merged feed-forward sublayers that retain
more performance when merged.7

However, these differences reduce once recovery fine-tuning is performed. To see this, we randomly
select 3 sets of k consecutive layers for each of our tasks, and apply recovery fine-tuning to these
compressed models. In Table 2, we observe that all models achieve similar performance after fine-
tuning. Nevertheless, the choice of layers might be important if non-adjacent merges are allowed;
this is potential future work.

5.3 CHOICE OF ANCHOR LAYER

In addition to analyzing the subset of layers to merge, we also wish to understand the sensitivity of
our merging compression method to the choice of anchor layer for our alignment step. In section
3.3, we choose the first feed-forward sublayer in the sequence to serve as the reference, and compute

7We display loss on Wikitext-103 for visibility.

7



Table 2: Results comparing our compression method with 1/3 of feed-forward sublayers removed,
but with different sublayer groups. We include three random consecutive selections of sublayers,
excluding the original selection.

Model Metric Best pre-tune Random 1 Random 2 Random 3
ViT Accuracy(%) ↑ 79.2 79.5 78.5 78.9
GPT-2 PPL ↓ 17.3 18.3 17.1 17.3
OPUS-MT BLEU ↑ 33.6 33.9 33.8 33.1

permutations aligning the following sublayers to this reference. Here, we additionally consider
using either the last of the sequence, or the middle of the sequence, and report results in our 1/3
feed-forward merge setting in Table 3.

Table 3: Results comparing our compression method with 1/3 of feed-forward sublayers removed,
but with different anchor locations.

Model Metric Anchor First Anchor Middle Anchor Last
ViT Accuracy(%) ↑ 79.2 79.5 79.0
GPT-2 PPL ↓ 17.3 17.4 17.4
OPUS-MT BLEU ↑ 33.6 33.4 33.5

Similarly to the choice of layers, our merging approach is robust to the choice of reference or anchor
layer. This indicates that our method is not overly sensitive to the choice of which sublayer to align
other sublayers to, enhancing the reliability of our permutation-based alignment method to find
corresponding features for a useful merge.

5.4 ADDITIONAL COMPRESSION VIA QUANTIZATION

We are interested in seeing if our method works well in combination with other compression methods.
For example, quantization is an extremely effective method to reduce the memory footprint of a
model by reducing the numerical precision of the parameters. While our compression method focuses
on identifying redundancies to reduce the overall parameter count via parameter sharing, quantization
can help reduce the overall storage needed for a model, and still proves an extremely effective
compression technique. Therefore, we wish to ensure that our method performs orthogonally to
state-of-the-art quantization, so that both methods may be used for additional storage savings.

We experiment with the LLM.int8() quantization method due to its effectiveness and widespread
adoption (Dettmers et al., 2022). In brief, this method extends absmax quantization, but retains 16-bit
precision for outlier values. We quantize our models after removing 1/3 of feed-forward sublayers,
and report scores in Table 4.

Table 4: Compression results across three tasks, before and after additional compression via quantiza-
tion. In this case, compression is measured in terms of total model storage complexity (disk space)
instead of parameter count.

Our Method +LLM.int8()

Model Metric Compression Performance Compression Performance

ViT Accuracy(%) ↑ 78% 79.2 20% 79.2
GPT-2 PPL ↓ 80% 17.3 22% 17.3
OPUS-MT BLEU ↑ 89% 33.6 51% 33.6

Combining our method with quantization provides an even smaller compression ratio, while retaining
high performance. Coupling quantization with additional compression, like our method, helps to
realize compression ratios like 20% when considering total model storage complexity.

8



5.5 SIMILARITY TRENDS ACROSS FEED-FORWARD SUBLAYERS

So far, we have shown that simply aligning, merging, and tying adjacent feed-forward sublayers is a
simple, yet effective technique for compressing Transformer models. Because of this, we look further
into the similarities between representations computed from different feed-forward sublayers. We are
interested in if these sublayers exhibit signs of redundancy, as eluded to in previous work (Pires et al.,
2023; Kobayashi et al., 2024).

To this end, we compare outputs between feed-forward sublayers within the same models. Across
our three tasks, we use 10k tokens or patches, depending on the model, from task validation sets
to compute a set of output states from all feed-forward sublayers. Then, we use Centered Kernel
Alignment (CKA) to compute their similarity. CKA is a state-of-the-art method for comparing the
similarity between neural network activations (Kornblith et al., 2019). We plot CKA similarity values
for all pairwise interactions between FF sublayers in all three of our model types, shown in Figure 4.

0 2 4 6 8 10
Feed-Forward Layer i

0

2

4

6

8

10

Fe
ed

-F
or

wa
rd

 L
ay

er
 j

0.2

0.4

0.6

0.8

1.0

CK
A 

Sc
or

e

(a) ViT

0 10 20 30
Feed-Forward Layer i

0

5

10

15

20

25

30

35

Fe
ed

-F
or

wa
rd

 L
ay

er
 j

0.2

0.4

0.6

0.8

1.0

CK
A 

Sc
or

e

(b) GPT2

0 2 4 6 8 10
Feed-Forward Layer i

0

2

4

6

8

10

Fe
ed

-F
or

wa
rd

 L
ay

er
 j

0.2

0.4

0.6

0.8

1.0

CK
A 

Sc
or

e

(c) OPUS-MT

Figure 4: CKA plots of feed-forward sublayer hidden states across three different models. In all three
settings, we see clear regions of high similarity between different FF layers. We do not compare
between encoder and decoder feed-forward sublayers in the Translation model due the differences in
token inputs.

We notice that across all three model/task pairs, clear regions of high similarity can be observed. This
means that the outputs of these feed-forward sublayers are highly similar, despite being interleaved
with multi-headed attention sublayers. We note that similar behavior is not seen in attention sublayers,
as seen in Appendix C. While prior work has shown similarities between the outputs of adjacent
full Transformer layers, this similarity can be explained in part to the residual computations that add
the prior sublayer output to the current sublayer output (Kornblith et al., 2019; Dalvi et al., 2020).
However, in comparing feed-forward outputs, we isolate this signal from the stream of residual
computations, before the output is added back to the input, making the observed similarity more
surprising due to the greater independence between these computations.

6 CONCLUSION

In this work, we propose a novel compression method that applies to Transformer-based models
via merging and tying adjacent sets of feed-forward blocks. Our method serves as an alternative to
existing compression approaches, and opens possibilities of future methods that examine the use of
parameter merging and weight tying as a post-training compression technique in deep learning. We
demonstrate our method’s extensibility by applying it to several types of Transformer-based models,
namely GPT-2, ViT, and an OPUS-MT translation model. Across these diverse tasks, we show that
our method can maintain almost full performance while removing 1/3 of feed-forward sublayers,
and maintains high performance even after removing 1/2 of all feed-forward sublayers. Finally, we
explore the differences in representation similarity between feed-forward and attention sublayers, and
find regions of high similarity between feed-forward sublayers (despite being separated by attention
sublayers), which may be related to their surprising mergeability found in our experimentation.

9



REFERENCES

Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo
permutation symmetries. In The Eleventh International Conference on Learning Representations,
2023.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. In The
Twelfth International Conference on Learning Representations, 2024.

David F. Crouse. On implementing 2d rectangular assignment algorithms. IEEE Transactions on
Aerospace and Electronic Systems, 52(4):1679–1696, 2016. doi: 10.1109/TAES.2016.140952.

Fahim Dalvi, Hassan Sajjad, Nadir Durrani, and Yonatan Belinkov. Analyzing redundancy in
pretrained transformer models. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.),
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 4908–4926, Online, November 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-main.398. URL https://aclanthology.org/2020.emnlp-main.
398.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gllm.int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2020.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. In International Conference on Learning
Representations, 2022.

Emile Fiesler, Amar Choudry, and H John Caulfield. Weight discretization paradigm for optical
neural networks. In Optical interconnections and networks, volume 1281, pp. 164–173. SPIE,
1990.

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vlad Karpukhin, Brian
Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging large
language models. arXiv preprint arXiv:2403.13257, 2024.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. stat,
1050:9, 2015.

Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word classifiers: A
loss framework for language modeling. In International Conference on Learning Representations,
2017.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and Kentaro Inui. Analyzing feed-forward blocks
in transformers through the lens of attention maps. In The Twelfth International Conference on
Learning Representations, 2024.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–3529.
PMLR, 2019.

François Lagunas, Ella Charlaix, Victor Sanh, and Alexander M Rush. Block pruning for faster
transformers. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 10619–10629, 2021.

10

https://aclanthology.org/2020.emnlp-main.398
https://aclanthology.org/2020.emnlp-main.398


Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Pingzhi Li, Zhenyu Zhang, Prateek Yadav, Yi-Lin Sung, Yu Cheng, Mohit Bansal, and Tianlong
Chen. Merge, then compress: Demystify efficient smoe with hints from its routing policy. In The
Twelfth International Conference on Learning Representations, 2024.

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent learning:
Do different neural networks learn the same representations? In Dmitry Storcheus, Afshin
Rostamizadeh, and Sanjiv Kumar (eds.), Proceedings of the 1st International Workshop on Feature
Extraction: Modern Questions and Challenges at NIPS 2015, volume 44 of Proceedings of
Machine Learning Research, pp. 196–212, Montreal, Canada, 11 Dec 2015. PMLR. URL https:
//proceedings.mlr.press/v44/li15convergent.html.

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J Reddi,
Ke Ye, Felix Chern, Felix Yu, Ruiqi Guo, et al. The lazy neuron phenomenon: On emergence
of activation sparsity in transformers. In The Eleventh International Conference on Learning
Representations, 2023.

Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, et al. Mobilellm: Optimizing
sub-billion parameter language models for on-device use cases. In Forty-first International
Conference on Machine Learning, 2024.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect,
2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2017.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin (eds.),
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp.
311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguistics.
doi: 10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040.

Telmo Pires, António Vilarinho Lopes, Yannick Assogba, and Hendra Setiawan. One wide feed-
forward is all you need. In Philipp Koehn, Barry Haddow, Tom Kocmi, and Christof Monz
(eds.), Proceedings of the Eighth Conference on Machine Translation, pp. 1031–1044, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.wmt-1.98.
URL https://aclanthology.org/2023.wmt-1.98.

Matt Post. A call for clarity in reporting BLEU scores. In Ondřej Bojar, Rajen Chatterjee, Christian
Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes,
Philipp Koehn, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Lucia
Specia, Marco Turchi, and Karin Verspoor (eds.), Proceedings of the Third Conference on Machine
Translation: Research Papers, pp. 186–191, Brussels, Belgium, October 2018. Association for
Computational Linguistics. doi: 10.18653/v1/W18-6319. URL https://aclanthology.org/
W18-6319.

Ofir Press and Lior Wolf. Using the output embedding to improve language models. In Proceedings
of the 15th Conference of the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers, pp. 157–163, 2017.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Machel Reid, Edison Marrese-Taylor, and Yutaka Matsuo. Subformer: Exploring weight sharing
for parameter efficiency in generative transformers. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2021, pp. 4081–4090, Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.344. URL
https://aclanthology.org/2021.findings-emnlp.344.

11

https://proceedings.mlr.press/v44/li15convergent.html
https://proceedings.mlr.press/v44/li15convergent.html
https://aclanthology.org/P02-1040
https://aclanthology.org/2023.wmt-1.98
https://aclanthology.org/W18-6319
https://aclanthology.org/W18-6319
https://aclanthology.org/2021.findings-emnlp.344


Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. On the effect of dropping layers of
pre-trained transformer models. Computer Speech & Language, 77:101429, 2023.

Sho Takase and Shun Kiyono. Lessons on parameter sharing across layers in transformers. In
Nafise Sadat Moosavi, Iryna Gurevych, Yufang Hou, Gyuwan Kim, Young Jin Kim, Tal Schus-
ter, and Ameeta Agrawal (eds.), Proceedings of The Fourth Workshop on Simple and Effi-
cient Natural Language Processing (SustaiNLP), pp. 78–90, Toronto, Canada (Hybrid), July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.sustainlp-1.5. URL
https://aclanthology.org/2023.sustainlp-1.5.

Norman Tatro, Pin-Yu Chen, Payel Das, Igor Melnyk, Prasanna Sattigeri, and Rongjie Lai. Optimizing
mode connectivity via neuron alignment. Advances in Neural Information Processing Systems, 33:
15300–15311, 2020.

Jörg Tiedemann. Parallel data, tools and interfaces in OPUS. In Nicoletta Calzolari, Khalid
Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph Mariani, Asuncion
Moreno, Jan Odijk, and Stelios Piperidis (eds.), Proceedings of the Eighth International Confer-
ence on Language Resources and Evaluation (LREC’12), pp. 2214–2218, Istanbul, Turkey, May
2012. European Language Resources Association (ELRA). URL http://www.lrec-conf.org/
proceedings/lrec2012/pdf/463_Paper.pdf.

Jörg Tiedemann. The Tatoeba Translation Challenge – Realistic data sets for low resource and
multilingual MT. In Proceedings of the Fifth Conference on Machine Translation, pp. 1174–1182,
Online, November 2020. Association for Computational Linguistics. URL https://www.aclweb.
org/anthology/2020.wmt-1.139.

Jörg Tiedemann and Santhosh Thottingal. OPUS-MT – building open translation services for
the world. In André Martins, Helena Moniz, Sara Fumega, Bruno Martins, Fernando Batista,
Luisa Coheur, Carla Parra, Isabel Trancoso, Marco Turchi, Arianna Bisazza, Joss Moorkens,
Ana Guerberof, Mary Nurminen, Lena Marg, and Mikel L. Forcada (eds.), Proceedings of the
22nd Annual Conference of the European Association for Machine Translation, pp. 479–480,
Lisboa, Portugal, November 2020. European Association for Machine Translation. URL https:
//aclanthology.org/2020.eamt-1.61.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems, 2017. URL https://api.semanticscholar.org/CorpusID:13756489.

Neha Verma and Maha Elbayad. Merging text transformer models from different initializations, 2024.
URL https://arxiv.org/abs/2403.00986.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Anna Korhonen,
David Traum, and Lluís Màrquez (eds.), Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 5797–5808, Florence, Italy, July 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P19-1580. URL https://aclanthology.org/P19-1580.

Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao.
Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities,
2024. URL https://arxiv.org/abs/2408.07666.

12

https://aclanthology.org/2023.sustainlp-1.5
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
https://www.aclweb.org/anthology/2020.wmt-1.139
https://www.aclweb.org/anthology/2020.wmt-1.139
https://aclanthology.org/2020.eamt-1.61
https://aclanthology.org/2020.eamt-1.61
https://api.semanticscholar.org/CorpusID:13756489
https://arxiv.org/abs/2403.00986
https://aclanthology.org/P19-1580
https://arxiv.org/abs/2408.07666


A FULL RESULTS AT VARYING COMPRESSION RATIOS

Table 5: Full numerical results on compression results at 1/3 FF sublayers removed, 1/2 FF sublayers
removed, and (n− 1)/n FF sublayers removed. Original, uncompressed models are included in the
first row of results for each model, indicated by 0 FFs removed and no merged indices.

Model Metric Merged Indices FFs Removed Vanilla Permute

ViT Accuracy (%) ↑
– 0/12 80.3 80.3
3-7 4/12 77.8 79.2
4-10 6/12 75.3 76.3
0-11 11/12 39.0 58.1

GPT-2 PPL ↓
– 0/36 16.16 16.16
22-34 12/36 17.39 17.27
16-34 18/36 19.01 18.66
0-35 35/36 23.02 21.31

OPUS-MT BLEU ↑
– 0/12 35.8 35.8
2-4/2-4 4/12 33.3 33.6
0-3/0-3 6/12 32.8 33.2
0-5/0-5 11/12 29.3 30.1

B FINE-TUNING DETAILS

B.1 GPT-2

Table 6: Hyperparameters used for GPT-2 fine-tuning

Hyperparameter Value

Start LR 5e-5
LR Schedule inv_sqrt
fp16 True
batch size 2
n_steps 100K

B.2 VIT

Table 7: Hyperparameters used for ViT fine-tuning

Hyperparameter Value

Start LR 5e-5
LR Schedule lin_decay with min
decay_steps 20K
Min LR 1e-6
fp16 True
batch size 128
n_steps 50K

B.3 MACHINE TRANSLATION

We select our best model using validation BLEU, computed on a 2000 instance subset of the full
Tatoeba validation set.

13



Table 8: Hyperparameters used for OPUS-MT fine-tuning

Hyperparameter Value

Start LR 5e-5
LR Schedule inv_sqrt
fp16 True
bsz 64
n_steps 100K

C ATTENTION LAYER SIMILARITY

We compute CKA similarity between all attention sublayer pairs, using the same 10k tokens or
patches from our CKA results on FF sublayers. The features are from the output of the linear layer
just after the dot-product attention computation.

0 2 4 6 8 10
Feed-Forward Layer i

0

2

4

6

8

10

Fe
ed

-F
or

wa
rd

 L
ay

er
 j

0.2

0.4

0.6

0.8

1.0

CK
A 

Sc
or

e

(a) ViT

0 10 20 30
Feed-Forward Layer i

0

5

10

15

20

25

30

35

Fe
ed

-F
or

wa
rd

 L
ay

er
 j

0.2

0.4

0.6

0.8

1.0

CK
A 

Sc
or

e

(b) GPT2

0 2 4 6 8 10
Feed-Forward Layer i

0

2

4

6

8

10

Fe
ed

-F
or

wa
rd

 L
ay

er
 j

0.2

0.4

0.6

0.8

1.0

CK
A 

Sc
or

e

(c) OPUS-MT

Figure 5: CKA plots of multi-headed self-attention sublayer activations across three different trained
models. Attention activations are largely dissimilar from each other across model types. We do not
compare between encoder and decoder attention sublayers in the translation model due the differences
in token inputs.

14


	Introduction
	Related Work
	Weight sharing for smaller models
	Pruning and redundancy

	Merging Feed-Forward Sublayers
	Feed-forward sublayers as a merging target
	Background on permutation-based neuron alignment
	Combining feed-forward sublayers
	Selecting sublayers to merge

	Experimental Setup
	Language modeling
	Image classification with ViT
	Machine translation

	Results
	Merging feed-forward sublayers across compression ratios
	Choice of merged sublayers
	Choice of anchor layer
	Additional compression via quantization
	Similarity trends across feed-forward sublayers

	Conclusion
	Full Results at varying compression ratios
	fine-tuning details
	GPT-2
	ViT
	Machine Translation

	Attention Layer Similarity

